
LECTURE 19

PROCESSORS ALLOCATION

Distributed Operating System

Processor Allocation

 determine which process is assigned to
which processor. Also called load
distribution.

 Two categories:

 Static load distribution-nonmigratory, once
allocated, can not move, no matter how
overloaded the machine is.

 Dynamic load distribution-migratory, can
move even if the execution started. But
algorithm is complex.

Distributed Operating System

The goals of allocation

 1 Maximize CPU utilization

 2 Minimize mean response time/
Minimize response ratio

 Response ratio-the amount of time
it takes to run a process on some
machine, divided by how long it would
take on some unloaded benchmark
processor. E.g. a 1-sec job that takes
5 sec. The ratio is 5/1.

Distributed Operating System

Design issues for processor

allocation algorithms
  Deterministic versus heuristic

algorithms

  Centralized versus distributed

algorithms

  Optimal versus suboptimal algorithms

  Local versus global algorithms

  Sender-initiated versus receiver-

initiated algorithms

Distributed Operating System

How to measure a processor

is overloaded or

underloaded?
 1 Count the processes in the machine? Not

accurate because even the machine is idle there

are some daemons running.

 2 Count only the running or ready to run

processes? Not accurate because some daemons

just wake up and check to see if there is anything

to run, after that, they go to sleep. That puts a

small load on the system.

 3 Check the fraction of time the CPU is busy

using time interrupts. Not accurate because when

CPU is busy it sometimes disable interrupts.

Distributed Operating System

Cont..

 How to deal with overhead?
 A proper algorithm should take into account the CPU time,

memory usage, and network bandwidth consumed by the

processor allocation algorithm itself.

 How to calculate complexity?
 If an algorithm performs a little better than others but

requires much complex implementation, better use the simple

one.

 How to deal with stability?
 Problems can arise if the state of the machine is not stable

yet, still in the process of updating.

Distributed Operating System

Load distribution based on

precedence graph

2

1

4

4

2

1

1 1

2 2

T1

T2

T3 T4

T5

T1

T2

T3

T4

T5

Time

1

2

P1 P2

Distributed Operating System

Cont..

d d

T2 T3

T1

T1 T1

T2 T3

T1

T2

T3

T1

T2

T3

d

Distributed Operating System

Two Optimal Scheduling

Algorithms
 The precedence graph is a tree

T1 T2 T3 T4

T5

T6

T7

T8

T9

T10 T11 T12

T13

1

2

3

4

5 T1 T2 T3

T4 T5 T7

T6 T9 T10

T8 T12

T11

T13

Distributed Operating System

Cont..

 There are only two processors

11 7

4

10

2

6

1 3

9

5

8

T9
T10 T11

T7 T8

T6

T4 T5

T1 T2 T3

T9 T10

T7 T8

T11 T6

T5 T4

T3 T2

T1

Distributed Operating System

A graph-theoretic

deterministic algorithm

A B C D

E F

G H I

3

6

4

3

2

4
1

2

5

5
8

2 3

4

1 2

E F

H 4

3 1

2

1 2

A B C D

G I

8 5

5 4

2

Total network traffic: 2+4+3+4+2+8+5+2

=30

Total network traffic: 3+2+4+4+3+5+5+2

= 28

Distributed Operating System

Dynamic Load Distribution

 Components of dynamic load

distribution

• Initiation policy

• Transfer policy

• Selection policy

• Profitability policy

• Location policy

• Information policy

Distributed Operating System

Dynamic load distribution

algorithms
 Load balancing algorithms can be

classified as follows:

• Global vs. Local

• Centralized vs. decentralized

• Noncooperative vs. cooperative

• Adaptive vs. nonadaptive

Distributed Operating System

A centralized algorithm

 Up-down algorithm: a coordinator maintains a usage table

with one entry per personal workstation.

1. When a workstation owner is running processes on other

people’s machines, it accumulates penalty points, a fixed

number per second. These points are added to its usage

table entry.

2. When it has unsatisfied requests pending, penalty points

are subtracted from its usage table entry.

 A positive score indicates that the workstation is a net user

of system resources, whereas a negative score means that

it needs resources. A zero score is neutral.

 When a processor becomes free, the pending request

whose owner has the lowest score wins.

Distributed Operating System

A hierarchical algorithm

Deans

Dept. heads

Workers

Distributed Operating System

A sender-initiated algorithm

LWM

HWM HWM

LWM

1. poll

2. transfer

Distributed Operating System

A receiver-initiated algorithm

LWM

HWM HWM

LWM

1. poll

2. transfer

Distributed Operating System

A bidding algorithm

 This acts like an economy. Processes

want CPU time. Processors give the

price. Processes pick up the process

that can do the work and at a

reasonable price and processors pick

up the process that gives the highest

price.

Distributed Operating System

Bidding algorithm

Requestor

overloaded

Candidate 1 Candidate n

1. bid

1. bid

2. response

2. response

3. transfer

Distributed Operating System

Cont..

 Iterative (also called nearest neighbor)

algorithm: rely on successive

approximation through load

exchanging among neighboring nodes

to reach a global load distribution.

 Direct algorithm: determine senders

and receivers first and then load

exchanges follow.

Distributed Operating System

Direct algorithm

 the average system load is

determined first. Then it is broadcast

to all the nodes in the system and

each node determines its status:

overloaded or underloaded. We can

call an overloaded node a peg and an

underloaded node a hole.

 the next step is to fill holes with pegs

preferably with minimum data

movements.
Distributed Operating System

Nearest neighbor algorithms:

diffusion

 Lu(t+1)=Lu(t)+v  A(u) (u,v (Lv(t)-Lu(t))+u(t))

 A(u) is the neighbor set of u.

 0<=u,v<=1 is the diffusion parameter

which determines the amount of load

exchanged between two neighboring nodes

u and v.

u(t)) is the new incoming load between t and

t+1.

Distributed Operating System

Nearest neighbor algorithm:

gradient
 One of the major issues is to define a

reasonable contour of gradients. The
following is one model. The
propagated pressure of a processor u,
p(u), is defined as

 If u is lightly loaded, p(u) = 0

 Otherwise, p(u) = 1 + min{p(v)|v є
A(u)}

Distributed Operating System

Nearest neighbor algorithm:

gradient

12 23

7

18 23 12 8

20

2

0

8 7

9

27 11 6

3 3

2

1 2 1 2

1

0

0

1 2

2

2 1 2

A node is lightly loaded if its load is < 3.

Distributed Operating System

Nearest neighbor algorithm:

dimension exchange

12

8 1

4

6
4

0

8

4 5

2

 5

2

6

6 6

 3

 3

 4

5

5 5

4

4

5

7

5

6

4

5

5

Distributed Operating System

Nearest neighbor algorithm:

dimension exchange

extension

Distributed Operating System

ASSIGNMENT

 Q: Explain various processor

allocation algorithms in distributed

system.

Distributed Operating System

